Overview

- Image adaptive data hiding
Overview

- Image adaptive data hiding
Overview

- Image adaptive data hiding \Rightarrow tuned to image statistics
Overview

- Image adaptive data hiding \Rightarrow tuned to image statistics
 - better fidelity
Image adaptive data hiding \Rightarrow tuned to image statistics
- better fidelity
- better robustness
Overview

- **Image adaptive data hiding** ⇒ tuned to **image statistics**
 - better **fidelity**
 - better **robustness**

- New technique suited for **JPEG2000** compressed media
Overview

- **Image adaptive data hiding** ⇒ tuned to image statistics
 - better fidelity
 - better robustness
- New technique suited for JPEG2000 compressed media
- **IDS codes** for synchronization
Embed information M into a coverwork c by modifying its content imperceptibly.
The Basics
Quantization Index Modulation

- Embed information M into a coverwork c by modifying its content imperceptibly
- Embed $m = 0$ or 1 in a sample x using Scalar QIM\(^1\)

\[
x_w = Q\left(x - \frac{m\Delta}{2}\right) + \frac{m\Delta}{2}
\]

\(^1\)Chen and Wornell
Embed information M into a coverwork c by modifying its content imperceptibly.

Embed $m = 0$ or 1 in a sample x using Scalar QIM1

$$x_w = Q\left(x - \frac{m\Delta}{2}\right) + \frac{m\Delta}{2}$$

Choose samples (coefficients) to embed $\log_2(M)$ bits.

1Chen and Wornell
The Basics
Perceptual Shaping

- Psychovisual studies on perceptually similar signals

\(^2\text{Distortion should remain imperceptible}\)
The Basics
Perceptual Shaping

- *Psychovisual studies* on perceptually similar signals
- *Complex* models of human visual system

\(^2\text{Distortion should remain imperceptible}\)
The Basics
Perceptual Shaping

- **Psychovisual studies** on perceptually similar signals
- **Complex** models of human visual system
- First applied to **quantization** in compression schemes

\[2\text{ Distortion should remain imperceptible}\]
Psychovisual studies on perceptually similar signals
Complex models of human visual system
First applied to quantization in compression schemes
How to apply to Scalar QIM?

²Distortion should remain imperceptible
The Basics
Perceptual Shaping

- Psychovisual studies on perceptually similar signals
- Complex models of human visual system
- First applied to quantization in compression schemes
- How to apply to Scalar QIM?
 - Operate in transform domain

\(^2\)Distortion should remain imperceptible
The Basics
Perceptual Shaping

- **Psychovisual studies** on perceptually similar signals
- **Complex** models of human visual system
- First applied to *quantization* in compression schemes
- How to apply to *Scalar QIM*?
 - Operate in transform domain
 - Determine maximum allowable\(^2\) distortion \(\epsilon\)

\(^2\) Distortion should remain imperceptible
The Basics
Perceptual Shaping

- Psychovisual studies on perceptually similar signals
- Complex models of human visual system
- First applied to quantization in compression schemes
- How to apply to Scalar QIM?
 - Operate in transform domain
 - Determine maximum allowable\(^2\) distortion \(\epsilon\)
 - Determine quantizer stepsize \(\Delta\) to be \(\frac{\epsilon}{2}\)

\(^2\) Distortion should remain imperceptible
Watermark extractor does not need original data (key-based)
Perceptual Shaping and Data Hiding

Blind data hiding

- Watermark extractor does not need original data (key-based)
- No performance loss\(^3\)

\(^3\)Data Hiding Codes, Moulin and Koeter
Perceptual Shaping and Data Hiding

Blind data hiding

- Watermark extractor does not need original data \((\text{key-based})\)
- No performance loss\(^3\)
- Perceptual Shaping \(\Rightarrow\) image dependent coefficient selection

\(^3\)Data Hiding Codes, Moulin and Koeter
Watermark extractor does not need original data (key-based)
No performance loss
Perceptual Shaping \Rightarrow image dependent coefficient selection
Use mask values to select coefficients

\[3\] Data Hiding Codes, Moulin and Koeter
Perceptual Shaping and Data Hiding

Blind data hiding

- Watermark extractor does not need original data (key-based)
- No performance loss\(^3\)
- Perceptual Shaping \(\Rightarrow\) image dependent coefficient selection
- Use mask values to select coefficients
- Compare to threshold determined by payload size

\(^3\)Data Hiding Codes, Moulin and Koeter
Lewis-Barni mask on DWT coefficients

\[q^\theta_l(i, j) = \Theta(l, \theta) \Delta(l, i, j) \Xi(l, i, j)^{0.2} \]
Perceptual Shaping and Data Hiding
Perceptual Shaping: Lewis-Barni

- **Lewis-Barni mask** on DWT coefficients

\[
q_{l}^{\theta}(i,j) = \Theta(l,\theta)\Delta(l,i,j)\Xi(l,i,j)^{0.2}
\]

- \(\Theta\) depends on resolution level and orientation
Lewis-Barni mask on DWT coefficients

\[q^\theta_l(i, j) = \Theta(l, \theta)\Delta(l, i, j)\Xi(l, i, j)^{0.2} \]

- \(\Theta\) depends on resolution level and orientation
- \(\Delta\) measures local brightness
Perceptual Shaping and Data Hiding

Perceptual Shaping: Lewis-Barni

- Lewis-Barni mask on DWT coefficients

\[q_\theta^l(i, j) = \Theta(l, \theta)\Delta(l, i, j)\Xi(l, i, j)^{0.2} \]

- \(\Theta\) depends on resolution level and orientation
- \(\Delta\) measures local brightness
- \(\Xi\) factors in texture activity
Perceptual Shaping and Data Hiding
Perceptual Shaping: Lewis-Barni

- Lewis-Barni mask on DWT coefficients

\[q^\theta_l(i,j) = \Theta(l, \theta) \Delta(l, i, j) \Xi(l, i, j)^{0.2} \]

- \(\Theta \) depends on resolution level and orientation
- \(\Delta \) measures local brightness
- \(\Xi \) factors in texture activity

- Accurate representation of HVS.
Lewis-Barni mask on DWT coefficients

\[q^\theta_l(i, j) = \Theta(l, \theta) \Delta(l, i, j) \Xi(l, i, j)^{0.2} \]

- \(\Theta \) depends on resolution level and orientation
- \(\Delta \) measures local brightness
- \(\Xi \) factors in texture activity
- + Accurate representation of HVS.
- + DWT Based
Perceptual Shaping and Data Hiding

Perceptual Shaping: Lewis-Barni

- **Lewis-Barni mask** on DWT coefficients

\[q^\theta_l(i, j) = \Theta(l, \theta) \Delta(l, i, j) \Xi(l, i, j)^{0.2} \]

- \(\Theta\) depends on resolution level and orientation
- \(\Delta\) measures local brightness
- \(\Xi\) factors in texture activity

- + Accurate representation of HVS.
- + DWT Based
- - High Complexity.
Solanki mask on DCT coefficients of 8 by 8 blocks

\[E_{\text{block}} = \sum_{i,j=0}^{7} ||C(i,j)||^2 - ||C(0,0)||^2 \]
Solanki mask on DCT coefficients of 8 by 8 blocks

\[E_{\text{block}} = \sum_{i,j=0}^{7} ||C(i,j)||^2 - ||C(0,0)||^2 \]

+ Low Complexity
Solanki mask on DCT coefficients of 8 by 8 blocks

\[E_{\text{block}} = \sum_{i,j=0}^{7} \|C(i,j)\|^2 - \|C(0,0)\|^2 \]

- Low Complexity
- DCT based
Solanki mask on DCT coefficients of 8 by 8 blocks

\[E_{\text{block}} = \sum_{i,j=0}^{7} ||C(i,j)||^2 - ||C(0,0)||^2 \]

- Low Complexity
- DCT based
- Block based
Perceptual Shaping and Data Hiding

Perceptual Shaping: Tree Based

- **Tree based mask** on DWT coefficients

\[
E_{\text{tree}}(l, \theta, i, j) = \sum_{k=1+a}^{l-1} \sum_{x,y=0}^{2^{l-k}-1} ||l_k^\theta(i+x, j+y)||^2,
\]

(1)
Perceptual Shaping and Data Hiding
Perceptual Shaping: Tree Based

▶ Tree based mask on DWT coefficients

\[
E_{\text{tree}}(l, \theta, i, j) = \sum_{k=1+a}^{l-1} \sum_{x, y=0}^{2^l-1} ||l_k^\theta(i + x, j + y)||^2 , \quad (1)
\]

▶ + Low Complexity
Perceptual Shaping and Data Hiding

Perceptual Shaping: Tree Based

- **Tree based mask on DWT coefficients**

\[
E_{\text{tree}}(l, \theta, i, j) = \sum_{k=1+a}^{l-1} 2^{l-k-1} \sum_{x, y=0}^{2^{l-k}-1} ||I_{\theta}^k(i + x, j + y)||^2 ,
\]

(1)

- + Low Complexity
- + DWT based
Perceptual Shaping and Data Hiding

Perceptual Shaping: Tree Based

- **Tree based mask** on DWT coefficients

\[E_{\text{tree}}(l, \theta, i, j) = \sum_{k=1+a}^{l-1} \sum_{x,y=0}^{2^{l-k}-1} ||l_k^\theta(i + x, j + y)||^2 \]

- + Low Complexity
- + DWT based
- + Good visual performance
Perceptual Shaping and Data Hiding

Perceptual Shaping: the masks

(a) Lewis-Barni
(b) Solanki
(c) Tree Based
Synchronization issues modeled by IDS channel
- Synchronization issues modeled by IDS channel
- Conventional ECC expect a substitution-only channel
Synchronization issues modeled by IDS channel
Conventional ECC expect a substitution-only channel
We use an improved Davey-MacKay construction:
- Synchronization issues modeled by IDS channel
- Conventional ECC expect a substitution-only channel
- We use an improved Davey-MacKay construction:
 - outer non-binary error-correcting code
Synchronization issues modeled by IDS channel

Conventional ECC expect a substitution-only channel

We use an improved Davey-MacKay construction:

- outer non-binary error-correcting code
- sparse code
Synchronization issues modeled by IDS channel
- Conventional ECC expect a substitution-only channel
- We use an improved Davey-MacKay construction:
 - outer non-binary error-correcting code
 - sparse code
 - pseudo-random binary marker sequence
Overview of the complete system

- Payload: 300 bits
- Modified coefficients: 3000 (rate 1/10 IDS code)
Results

IDS performance

- High error rate, especially for Tree-based
- Still within capabilities of ECC
Results
Decoding performance

- Robustness as good as Lewis-Barni, at reduced complexity
- Poor robustness of Solanki – domain mismatch
Results

Other attacks

- We have seen effect of JPEG 2000 compression
Results

Other attacks

- We have seen effect of JPEG 2000 compression
- Effect of other attacks is similar:
Results

Other attacks

- We have seen effect of JPEG 2000 compression
- Effect of other attacks is similar:
 - JPEG compression
Results

Other attacks

- We have seen effect of JPEG 2000 compression
- Effect of other attacks is similar:
 - JPEG compression
 - AWGN noise addition
Results

Visual Performance

<table>
<thead>
<tr>
<th>Method</th>
<th>PSNR</th>
<th>SSIM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lewis-Barni</td>
<td>59 dB</td>
<td>1.0000</td>
</tr>
<tr>
<td>Solanki</td>
<td>55 dB</td>
<td>0.9996</td>
</tr>
<tr>
<td>Tree Based</td>
<td>59 dB</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

(d) Lewis Barni
(e) Solanki
(f) Tree Based
Data hiding and IDS codes to solve synchronization issues
Conclusion

- Data hiding and IDS codes to \textit{solve} synchronization issues
- \textit{Novel} perceptual mask
Conclusion

- Data hiding and IDS codes to solve synchronization issues
- Novel perceptual mask
 - Low complexity
Conclusion

- Data hiding and IDS codes to solve synchronization issues
- **Novel** perceptual mask
 - Low complexity
 - Good visual performance
Conclusion

- Data hiding and IDS codes to solve synchronization issues
- **Novel** perceptual mask
 - Low complexity
 - Good visual performance
- **Readily applicable** for forensic applications

